Enzymes Possible Targets for New Anti-Malaria Drugs, According to Penn-led Study
PHILADELPHIA —Researchers at the Perelman School of Medicine at the University of Pennsylvania, Monash University, and Virginia Tech have used a set of novel inhibitors to analyze how the malaria parasite, Plasmodium falciparum, uses enzymes to chew up human hemoglobin from host red blood cells as a food source. They have validated that two of these parasite enzymes called peptidases are potential anti-malarial drug targets. The research appeared in an early online edition of the Proceedings of the National Academy Sciences.
"The basis for this research was to use small molecule inhibitors to help understand the biology of the malaria parasite and to find new drug targets as drug-resistant parasites necessitate the discovery of new antimalarials," says Doron C. Greenbaum, PhD, assistant professor of Pharmacology at Penn, who lead the collaborative study.
The P. falciparum parasite, delivered in a mosquito bite, causes malaria once it takes up residence in the human host's red blood cells and begins to digest hemoglobin, the protein that carries oxygen. The parasite multiplies and is picked up from the bloodstream when the mosquito feeds. Scientists are interested in determining which enzymes are responsible for generating amino acids from the hemoglobin in the feeding process.
Click here to view the full release.