Penn Cell Biologist Awarded $5.2 Million from NIH for Lung Regeneration Research
Penn Medicine researchers, along with colleagues at Cincinnati Children's Hospital and Boston University, have received a $5.2 million, seven-year grant from the National Heart, Lung, and Blood Institute of the National Institutes of Health (NIH) to study the cellular and molecular mechanisms that promote lung regeneration. The aim of the grant is to develop treatments for children with congenital lung diseases and adults whose lungs have been damaged from smoking, genetic defects, and acute injury.
The Penn-Cincinnati Children’s-Boston University research group is one of seven new research hubs that will comprise the new Progenitor Cell Translational Consortium, bringing together multidisciplinary researchers in the heart, lung, blood, and technology fields from different institutions throughout the country. Recipient institutions will receive a total of $40 million over the next seven years. The Consortium’s focus will be on translating advances in progenitor cell biology to new treatments for heart, lung, and blood diseases.
The Penn component of the consortium is led by Edward Morrisey, PhD, the Robinette Foundation Professor of Medicine, a professor of Cell and Developmental Biology, and the director of the Penn Center for Pulmonary Biology, in the Perelman School of Medicine. Morrisey is also the scientific director of thePenn Institute for Regenerative Medicine.
“The aim of our consortium is to harness the innate power of stem and progenitor cells in the lung to promote repair and regeneration and target them using emerging techniques for promoting tissue regeneration,” Morrisey said. “We will be examining both pediatric and adult populations since many children suffer from chronic lung diseases such as severe asthma and cystic fibrosis. In adults, we are interested in determining whether we can harness the innate ability of the lung to repair and regenerate to treat chronic lung diseases as well as acute injury.” The Penn group will also explore whether new advances in gene editing can be used to treat postnatal lung diseases.
Click here to view the full release.