Penn chemists expand new method of recycling rare-earth metals
Rare-earth metals are a key component in many modern technologies, yet mining and purifying them is not only expensive and labor-intensive, but devastating to the environment.
Although there is a huge incentive to recycle rare-earth metals, the current method of separating them is expensive and energy-consuming, takes weeks, and requires massive amounts of solvents.
Because of the cost and inefficiency of this process, rare-earth metals are currently only recycled at a rate of about 1 percent.
In a previous study, Penn researchers pioneered a process that could enable the efficient recycling of two rare-earth metals—neodymium and dysprosium—which are found in the small, powerful magnets in many high-tech devices.
The paper focused on one pairing in particular, europium and yttrium, which could enable scientists to recycle rare-earth metals from compact fluorescent light bulbs. Being able to recycle materials from these bulbs would not only keep mercury out of the environment, but also allow companies to get value out of the waste.
The new method minimizes the amount of waste generated and the amount of time and energy needed. To do this, the researchers designed a ligand to bind the ions in mixtures. The chemical compounds that form as a result are slightly different for each type of ion. For example, in mixtures of two types of elements, one is soluble in organic solvents, while the other is not. This allows the researchers to simply filter them, separating one of the metal cations from the other.
“Our thinking was if we could take the magnets or some material that comes out of the magnets and then apply a very simple chemical method, we could purify the rare-earths out of them directly and complement existing sources in the supply chain with this new one through simple chemistry,” Schelter says.
Schelter believes that there will eventually be a push by companies that are socially conscious to implement ethically sourced materials and manufacturing practices. He says the impact of this research is in taking steps to return materials to the supply chain at the end of their useful life as a consumer product.
“We shouldn’t just be throwing so much material away,” Schelter says. “There’s still a lot of value to it. I think that as part of a sustainable approach to manufacturing and developing a ‘circular’ economy, we should think about the impact and value of materials at every point along their lifecycle, and how we can efficiently and effectively bring them back to useful raw materials once they’re at the end of their product life.”
In Senegal, the ambitious Dakar Greenbelt project seeks to create an extensive network of ecological infrastructure in and around the city to sustainably address environmental concerns and enhance urban life. With support from David Gouverneur and Ellen Neises, Ph.D. candidate Rob Levinthal in the Weitzman School of Design led two courses that included a field trip to Dakar, that culminated in students presenting their visions for parts of the Greenbelt.
From a desert to an oasis: Penn engages in ambitious greening effort in the Sahel
Students from the Weitzman School of Design journeyed to Senegal to help with a massive ecological and infrastructural greening effort as part of their coursework. The Dakar Greenbelt aims to combat desertification and promote sustainable urban growth.
As part of an undergraduate course, Penn faculty and students curated an Arthur Ross Gallery exhibition of works from the Neumann family’s extensive collection of modern and contemporary art.
The University’s nexus for technology transfer supports researchers in their innovative efforts, from CAR T to mRNA advancements that have dramatically reshaped the world.