A team led by scientists in the Perelman School of Medicine has engineered powerful new antimicrobial molecules from toxic proteins found in wasp venom. The team hopes to develop the molecules into new bacteria-killing drugs, an important advancement considering increasing numbers of antibiotic-resistant bacteria which can cause illness such as sepsis and tuberculosis.
In the study, published in The Proceedings of the National Academy of Sciences, the researchers altered a highly toxic small protein from a common Asian wasp species, Vespula lewisii, the Korean yellow-jacket wasp. The alterations enhanced the molecule’s ability to kill bacterial cells while greatly reducing its ability to harm human cells. In animal models, the scientists showed that this family of new antimicrobial molecules made with these alterations could protect mice from otherwise lethal bacterial infections.
There is an urgent need for new drug treatments for bacterial infections, as many circulating bacterial species have developed a resistance to older drugs. The U.S. Centers for Disease Control & Prevention has estimated that each year nearly three million Americans are infected with antibiotic-resistant microbes and more than 35,000 die of them. Globally the problem is even worse: Sepsis, an often-fatal inflammatory syndrome triggered by extensive bacterial infection, is thought to have accounted for about one in five deaths around the world as recently as 2017.
“New antibiotics are urgently needed to treat the ever-increasing number of drug-resistant infections, and venoms are an untapped source of novel potential drugs. We think that venom-derived molecules such as the ones we engineered in this study are going to be a valuable source of new antibiotics,” says study senior author César de la Fuente, a Presidential Assistant Professor in psychiatry, microbiology, and bioengineering.
Read more at Penn Medicine News.