Multidisciplinary team to develop stem cell-based approaches to restore vision

School of Veterinary Medicine, Children’s Hospital of Philadelphia, and University of Wisconsin-Madison scientists will lead a team in developing a stem cell-based approach to treat blindness in dogs

3-d-image-of-eyeball-anatomy

A team from the University of Pennsylvania, Children’s Hospital of Philadelphia, and the University of Wisconsin-Madison are launching a project to develop new strategies for treating vision disorders using cells implanted in the retina. 

The work is one of five initiatives newly funded by the National Institutes of Health’s National Eye Institute (NEI) Audacious Goals Initiative. The program’s mission is to accelerate the development of regenerative medicine treatments for blindness. To that end, NEI is devoting $30 million for five years to five multidisciplinary teams around the country. The Penn, CHOP, and UW-led team will receive $6.9 million to support their research into restoring areas of the retina damaged due to blinding diseases.

portrait-of-john-wolfe
John Wolfe

The principal investigators are John Wolfe of the School of Veterinary Medicine and the Children’s Hospital of Philadelphia, William Beltran of the School of Veterinary Medicine, and David Gamm of the University of Wisconsin-Madison. Members of this group have used gene therapy approaches in the past to address genetic blinding diseases, with many successes. To replace or correct faulty genes, however, these treatments require living cells in the retina. At later stages of some blinding diseases, many if not most photoreceptor cells have perished. The group’s hope is that the cell-based therapies they’re creating may enable those with vision loss to regain sight even when key vision cells have already died.  

“We will be generating specialized retinal cells in a dish from reprogrammed adult stem cells, and then transplanting them into the retina,” says Wolfe. “Our work is going to be directed toward developing the right kind of cells, working on methods to transplant them into the retina, and examining the neural connections that form to see how the implanted cells are functioning. It’s the translational component of the research we’ve all been doing for a long time.”

Beltran, William 2018
William Beltran

Wolfe and his lab will be isolating and growing light-sensing photoreceptor cells, derived from stem cells from blind dogs, in collaboration with Gamm and colleagues, who have used embryonic and induced pluripotent stem cells in experimental cell-based therapies in human disease models. Beltran and colleagues, including Gustavo Aguirre, Karina Guziewicz, and Oliver Garden from Penn Vet and Geoffrey Aguirre from Penn’s Perelman School of Medicine, will be contributing expertise from studying and developing gene therapies for a variety of vision disorders in dogs, including retinitis pigmentosa, the canine version of which recapitulates many characteristics of human disease.

New disease models will enable researchers to test novel regenerative therapies and help transition them to the clinic. “Models that recapitulate human disease are essential to predicting the success of new therapies in humans. These audacious projects will be pivotal in our efforts to translate the latest science advances into new treatments for vision loss and blindness,” said NEI Director Paul A. Sieving.

The work will be supported by NEI Grant EY029890.

John Wolfe is a Stokes Investigator of the Research Institute of the Children’s Hospital of Philadelphia and a professor of pathology and director of the W.F. Goodman Center for Comparative Medical Genetics at Penn’s School of Veterinary Medicine.

William Beltran is professor of ophthalmology and director of the Division of Experimental Retinal Therapies (ExpeRTs) at Penn’s School of Veterinary Medicine.

David Gamm is an associate professor of ophthalmology and visual sciences and director of the McPherson Eye Research Institute at the University of Wisconsin-Madison.